Agent Based Control with Application to Microgrids with High Penetration Renewables

Sandia National Laboratory

Abstract
Prior Work is leveraged; MTU has developed and demonstrated through simulation a prototype multiagent system that coordinates the life cycle operations of a microgrid collective composed of independent electric power sources, loads, and storage. MTU has performed simulations of DC micro grids of varying compositions and characteristics. MTU has analyzed simulation results, and developed candidate architectures and protocols for agent-based microgrid controls.

Objective
Execution of this project will further technical innovations associated with multi-agent software controlling microgrid collectives. The microgrid control algorithms for microgrid collectives will be developed and refined using Michigan Tech microgrid models and simulations validated against the MTU test bench. The algorithms will then be applied to SNL hardware models in simulation and finally against the SNL hardware test bed.

Scope
Agent-based control systems will be further developed by MTU in Matlab/Simulink blocks, tested, and refined through simulations. Once control performance objectives have been achieved, the systems will be ported to the MTU situated multi-agent system (MAS) and supporting servo loop controllers on the MTU test bench for evaluation. New Matlab simulations will be tailored and tuned to control the SNL test bed models and verified in simulation. SNL will re-apply the MTU MAS to the physical SNL test bed. SNL will collaborate with MTU on implementation and validation. Collaborative efforts will ensure that SNL attains the technology necessary to achieve the final project objectives for the SNL test bed

Required Research Innovations:
1. Identify control system performance issues between agent informatics and DC nonlinear controls. Since global computations require input from various points, processor speed and network bandwidth may dominate the performance of collaborative protocols that rely on nonlinear control approaches. Research must identify the computational and communication limits for porting nonlinear controls to agent control layers.
2. Investigate scaling properties for controls applied to increasing the number of interconnected DC microgrids. Trading power between microgrids may not be feasible due to geographical distances or communication time latencies. There may also be thresholds identified for collaboration considerations, such as partnering with 10 microgrids or less, due to the global computation requirements. Control scaling results should describe the appropriate considerations at various time scales (seconds, minutes, hours, and days). Additional considerations for scalability may include increasing the number of components within a single microgrid and increasing the variety of components within the microgrid.

Investigators: Gordon Parker, Wayne Weaver, Steven Goldsmith