Vehicle to Grid Research

Vehicle to Grid


By treating a hybrid vehicle as a microgrid, it has the ability to exploit interconnection strategies for plug-and-play integration with deployed microgrids while being a mobile, energy exchange system between disconnected power grids. Research is focused on optimization and control of microgrids that have a significant penetration of vehicles that can be loads, sources, or energy storage devices.

Active Projects


  • Exploiting tradeoffs between high power plug-in vehicles, storage and renewable penetration
  • Optimal storage state of charge for mobile/vehicular microgrids
  • Vehicle design impact on grid connectivity
  • Use of military hybrids for FOB microgrid deployment
  • Distributed control strategies for plug-in hybrid charging for more manageable grid load
  • Information transfer between vehicles and grid (smartgrids)

Vehicle To Grid Chain

Vehicle Chart

Vehicle – to – Vehicle Resource Sharing

Mississippi State University / U.S. DoD TARDEC

The existing communication layer for Vehicle to Grid (V2G) operations has sufficient throughput and capabilities for basic connectivity, but may not have enough for tasks such as operating military vehicle systems remotely. They cyber security approach to V2G operations has had some development in industry; however military vehicles demand more scrutiny from a cyber security perspective.

Vehicle-to-Vehicle (V2V) resource sharing would enable a greatly expanded flexibility for utilization of assets for forward operating bases (FOB). Consider a FOB with a variety of vehicle assets, each with different levels of functionality. The ability to daisy-chain the vehicle assets together (including partially disabled vehicles), have the vehicles automatically determine their net capability and then share resources to accomplish a common goal (force protection for example), would enable a level of capability not currently available.

Specific Tasks: Vehicle-to-Grid Simulation, Connection Protocol Assessment, Connection Protocol Development, Throughput Assessment, and Simulation Studies.

Investigators: Gordon Parker, Wayne Weaver, Steven Y. Goldsmith