HVDC Distribution Study of Intelligent Power System

University of Dayton Research Institute

High Voltage Direct Current (HVDC) aviation electrical power systems (EPS) provide many advantages, particularly in the area of weight savings. Despite the advantages, there are technical challenges for these systems as the power and dynamic response demanded by high power and more-electric loads increases. High power HVDC systems require low source impedance which makes larger fault energy available to the system. In addition, flight and mission critical loads demand constant power and fast response by a tightly regulated EPS. These loads on a HVDC distribution can cause dynamically negative resistance resulting in poor power quality and/or loss of system stability.

AFRL’ s objective is to develop an intelligent power system to advance the state of the art in system efficiency and safety. This is a far-reaching and broad area of research that is best served by the participation of multiple research institutions that have developed expertise in specific areas. To that end, this Statement of Objectives outlines work where Michigan Technological University (MTU) has demonstrated outstanding research.
Specific areas of research that AFRL is interested in having MTU participate in this program are outlined below. The results of this research and development effort shall be available to all other parties collaborating on the AFRL Intelligent Power System Program as well as industry concerns involved with United States aviation power systems so that best practices and recommendations can be incorporated in future power system design concepts.

1.1 Analysis, Design, and Control of components (ns – ms level)
1.2 Distributed management/optimization of source and loads (ms – s level):
1.3 Mission level load planning(> 1 s level)
1.4 Energy Storage (ES) for pulsed power loads

Investigators: Wayne Weaver, Gordon Parker