Low-Cost Underwater Glider Fleet for Littoral Marine Research

Office of Naval Research

This research is focused on development of innovative practical solutions for control of individual and multiple unmanned underwater vehicles (UUVs) and address challenges such as underwater communication and localization that currently limit UUV use. More specifically, the Nonlinear and Autonomous Systems Laboratory (NAS Lab) team are developing a rigorous framework for analyzing and controlling underwater gliders (UGs) in harsh dynamic environments for the purpose of advancing efficient, collaborative behavior of UUVs.

Underwater gliders are now utilized for much more than long-term, basin-scale oceanographic sampling. In addition to environmental monitoring, UGs are increasingly depended on for littoral surveillance and other military applications. This research will facilitate the transition between academic modeling/simulation problem solving approach to real-world Navy applications. The importance of this research is evident in the Littoral BattleSpace Sensing (LBS) Program contract at the Naval Space and Naval Warfare Systems Command for 150 underwater gliders, designated the LBS-G. These gliders will be operated by the Navy in forward areas to rapidly assess and exploit environmental characteristics to improve the maneuvering of ships and submarines and advance the performance of fleet sensors.

Research results will provide the coordination tools necessary to enable the integration of these efficient and quiet vehicles as part of a heterogeneous network of autonomous vehicles capable of performing complex, tactical missions. The objective is to develop practical, energy-efficient motion control strategies for both individual and multiple UGs while performing in inhospitable, uncertain, and dynamic underwater environments.

The specific goals of this project are twofold. The first goal is to design and fabricate a fleet of low-cost highly maneuverable lightweight underwater gliders. The second goal is to evaluate the capability of the single and multiple developed UGs in littoral zones. The proposed work will develop UGs that would share the buoyancy-driven concept with the first generation of gliders called “legacy gliders.” However, the NAS Lab UGs will be smaller in size, lighter in weight, and lower in price than legacy gliders. This will result in more affordable and novel UG applications. Moreover, the NAS Lab design to development approach allows for technological innovation that overcomes known challenges and responds to unexpected needs that arise during testing. Therefore, the significance of this research is that it will enable implementation of recently developed efficient motion planning algorithms, multi-vehicle coordination algorithms, and extension of these algorithms in realistic conditions where absolute location and orientation of each vehicle is not known and the time-varying flow field is not locally determined.

 

Investigators: Nina Mahmoudian