Low-Cost Underwater Glider Fleet for Littoral Marine Research

Office of Naval Research

This research is focused on development of innovative practical solutions for control of individual and multiple unmanned underwater vehicles (UUVs) and address challenges such as underwater communication and localization that currently limit UUV use. More specifically, the Nonlinear and Autonomous Systems Laboratory (NAS Lab) team are developing a rigorous framework for analyzing and controlling underwater gliders (UGs) in harsh dynamic environments for the purpose of advancing efficient, collaborative behavior of UUVs.

Underwater gliders are now utilized for much more than long-term, basin-scale oceanographic sampling. In addition to environmental monitoring, UGs are increasingly depended on for littoral surveillance and other military applications. This research will facilitate the transition between academic modeling/simulation problem solving approach to real-world Navy applications. The importance of this research is evident in the Littoral BattleSpace Sensing (LBS) Program contract at the Naval Space and Naval Warfare Systems Command for 150 underwater gliders, designated the LBS-G. These gliders will be operated by the Navy in forward areas to rapidly assess and exploit environmental characteristics to improve the maneuvering of ships and submarines and advance the performance of fleet sensors.

Research results will provide the coordination tools necessary to enable the integration of these efficient and quiet vehicles as part of a heterogeneous network of autonomous vehicles capable of performing complex, tactical missions. The objective is to develop practical, energy-efficient motion control strategies for both individual and multiple UGs while performing in inhospitable, uncertain, and dynamic underwater environments.

The specific goals of this project are twofold. The first goal is to design and fabricate a fleet of low-cost highly maneuverable lightweight underwater gliders. The second goal is to evaluate the capability of the single and multiple developed UGs in littoral zones. The proposed work will develop UGs that would share the buoyancy-driven concept with the first generation of gliders called “legacy gliders.” However, the NAS Lab UGs will be smaller in size, lighter in weight, and lower in price than legacy gliders. This will result in more affordable and novel UG applications. Moreover, the NAS Lab design to development approach allows for technological innovation that overcomes known challenges and responds to unexpected needs that arise during testing. Therefore, the significance of this research is that it will enable implementation of recently developed efficient motion planning algorithms, multi-vehicle coordination algorithms, and extension of these algorithms in realistic conditions where absolute location and orientation of each vehicle is not known and the time-varying flow field is not locally determined.

 

Investigators: Nina Mahmoudian

Control System Design for Cargo Transfer from Offshore Supply Vessels to Large Deck Vessels

Craft Engineering Associates

Introduction
There is a wide range of hydraulic extending-boom and knuckle-boom cranes in use on marine vessels. These cranes are often used in dynamic motion environments for cargo transfer and small boat handling. The ability to safely launch and recover small boats in elevated sea states for naval, Coast Guard and oceanographic purposes is currently a focus of investigation within these communities.

The purpose of this investigation is to extend the research begun under SBIR topic N06-
057, “Cargo Transfer from Offshore Supply Vessels to Large Deck Vessels” to improve the performance of hydraulic marine cranes in the dynamic offshore environment. In addition, the lessons learned during the development of the Integrated Rider Block Tagline System (IRBTS), the Platform Motion Compensation System (PMC) and the Pendulation Control System (PCS) for the rigid-boom, level-luffing marine cranes used for container handling on sealift ships will be incorporated into a final integrated, modular kit to improve cargo transfer with these extending-boom and knuckle-boom cranes.

Phase II Technical Objectives
The goal of Phase II is to develop and demonstrate a modular solution for crane pendulation and motion control suitable for a wide range of existing U.S. Navy ship cranes. Phase I clearly showed that pendulation control can be modularized by implementing ship motion cancellation using the crane’s existing drive system and active load damping using a retrofit damping device. In that work, a specific crane design was considered and the study was strictly proof-of-concept through simulation.

Phase II focuses on identifying the range of cranes for which the modular approach is feasible, developing the analysis and design work flow needed to design and deploy the modular solution, and demonstrating both the process and the performance on a particular crane. The incremental technical objectives of Phase II are listed below.

1. The analysis and design process for implementing modular pendulation and motion control on any crane,
2. The development of a modular crane control system (MCCS) “kit” including refinement of the key subsystems (sensors, actuation, algorithms),
3. A phased demonstration of MCCS using 1/12th and larger scale testbeds.

At the conclusion of Phase II, the objective is to have a fully functioning MCCS system demonstrating ship motion cancellation, active payload damping on an articulated crane similar to those currently deployed on numerous U.S. Navy and civilian ships. The Phase II Option will focus this development on a design that can be implemented on the hydraulic extending-boom crane, currently proposed for use on the JHSV.

Investigators: Gordon Parker

Mark Vaughn

xdJJr3eLPtUPZrpPVx4z3KTToTZm8-h2bIOB7P4spj0Dr. Vaughn has joined Michigan Tech as a research professor after retiring from Sandia National Laboratories. His research expertise is in the area of mechanical and electromechanical design, stress analysis, dynamics, and innovative applications. He has over 10 patents, and has been the lead on a broad array of projects for the military.

Areas of Expertise

  • Electro-Mechanical Analysis and Design
  • Energy Storage
  • Hydrogen Peroxide Systems
  • Advanced Payloads
  • Robotic Vehicles
  • Biomedical Devices

Jason Blough

e10e_ffN8HO15iEONOIBzYqBn6tuLx_ncbXacXJdyJwDr. Blough’s research includes dynamic measurement problems, developing new digital signal processing algorithms to understand NVH type problems and ways to improve the NVH characteristics of virtually any machine. He has made measurements on items as small as individual turbine blades to items as large as 45m diameter radio telescopes and many machines in between including automobiles, snowmobiles, M1 tanks, locomotives, and appliances. He has worked on automotive and snowmobile powertrains and other vehicle components to make them quieter. Currently, he is researching the implementation of active noise control systems in passenger vehicles.

Dr. Blough developed order tracking algorithms for processing data on rotating machinery that are commercially licensed. Additional digital signal processing projects have included Kalman Filter development for a specific automotive application
and Sound and Vibration Quality Jury and metric studies.

Dr. Blough is well versed in nearly all experimental NVH techniques including Modal Analysis, Transfer Path Analysis, Time-Frequency analysis, etc. He routinely teaches many of these techniques in the classroom and industry short courses. He also has experience in FEA and multi-body dynamics modeling.

Areas of Interest:

  • Vibrations
  • Unique Instrumentation/Data Acquisition
  • Digital Signal Processing
  • Noise Control

Research Expertise:

  • Dynamic Measurement Problems
  • Developing new digital signal processing algorithms to understand NVH type problems
  • Ways to improve the NVH characteristics of virtually any machine

Ossama Abdelkhalik

Abdelkhalik_0219Dr. Abdelkhalik conducts research in the area of dynamics, control, and  global optimization with applications to spacecraft trajectory planning, data assimilation in oil reservoirs, systems design, and traffic engineering. In some applications, the design space has numerous local minima, with mixed variables (integer and real), and the number of optimization variables can be varied among different solutions to explore new regions in the design space. Global optimization methods can handle problems with mixed variables and numerous local minima, but variable-size design space optimization is yet to be explored. The research focus is on the study of global optimization methods that can handle variable-size design space problems. Other research efforts include the recursive implementation of evolutionary optimization algorithms for the sake of improving the computational efficiency in data assimilation problems.

Areas of Expertise

  • Estimation of Dynamic Systems
  • Global Optimization
  • Data Assimilation
  • Controls and Control Systems

Prepositioned Power Research

Overview

Prepositioned Power RobotsResearch is focused on developing technology to create systems that can autonomously create a microgrid, for situations that require the ability to preposition a basic level of energy infrastructure such as areas damaged by natural or man-made disasters, and autonomously deploying forward operating bases. Modeling and control of robotics and power conversion systems provides the ability to create such prepositioned electric power networks.

Active Projects

Applications

Autonomous Robots can carry a variety of power equipment:

  • Intelligent power electronics for energy conversion
  • Power connection hardware
  • Generation sources, both traditional and renewable
  • Energy storage

 

Prepositioned Power

Prepositioned Power

Four autonomous microgrid robots, each with different power network functionality. Two have renewable energy generation and storage capability, another has a conventional diesel genset, and the third contains intelligent power electronics for conversion and hard-line interconnection, and switchgear. After assessing the power requirements and available resources they would physically organize and electrically interconnect to form a micro-grid.

Energy Storage Design Research

Overview

From a controls point of view, energy storage systems are the “actuators” in the electrical power grid that enable the mitigation of the transient inputs of power supplies as well as uncontrolled loads. A goal is to optimize the location and amount of energy storage capacity needed to meet microgrid performance and stability constraints. This energy storage capacity can take on many forms from batteries to fly wheels to pumped hydro. Research is focused on integrated energy storage systems that utilize unconventional resources as much as possible. For example, buildings and parking lots full of PHEV’s and EV’s are good targets of opportunity when combined with PV on covered parking structures or distribution-scale PV systems.

Active Research Projects

Energy Storage Design

Energy Storage Design

Control and Optimization of Microgrids Research

Overview

Optimal Control Surface

Optimal Control Surface

Researchers are focused on the control of individual energy load, source, and storage energy points as building blocks in a microgrid. This technology enables operation of a stable and optimized system through an agent based approach of the power electronics energy conversion points, enabling a robust and re-configurable system that does not rely on central control or communication.

Active Research Projects

Applications

Research is ongoing to develop new modeling, simulation, control and optimization tools for rational decisions for the best use of microgids with high penetrations renewable and dispatchable loads:

  • Rapid deployment of survivable, flexible, reconfigurable, stable, smart microgrids for military forward operating bases and humanitarian missions.
  • Transformation of U.S. military installations to be net neutral with safe, reliable power generation.
  • Training engineers who can adapt to new interdisciplinary challenges associated with delivering secure energy for both civilian and military applications.
AIM Microgrid Strategy

AIM Microgrid Strategy

Control and Optimization

Control and Optimization