Bo Chen


Biography

Dr. Chen is the Dave House Associate Professor of Mechanical Engineering and Electrical Engineering in the Department of Mechanical Engineering – Engineering Mechanics and Department of Electrical and Computer Engineering at Michigan Technological University. She received her Ph.D. degree from the University of California, Davis, in 2005. Dr. Chen conducts interdisciplinary researches in the areas of mechatronics and embedded systems, agent technology, modeling and control of hybrid electric vehicles, cyber-physical systems, and automation. Her research projects are funded by National Science Foundation, Department of Energy, and industrial partners. Dr. Chen has authored or co-authored over 70 peer-reviewed journal and conference papers. She received the Best Paper Award at 2008 IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications.

Dr. Chen is currently serving as the Chair of the Technical Committee on Mechatronics and Embedded Systems of IEEE Intelligent Transportation Systems Society and the Chair of the Technical Committee on Mechatronic and Embedded Systems and Applications of ASME Design Engineering Division. She is an Associate Editor of the IEEE Transactions on Intelligent Transportation Systems. Dr. Chen has served as Program Chair, Symposium Chair, and Session Chair for a number of international conferences. She was the General Chair of 2013 ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications.
Areas of Expertise
Mechatronics and embedded systems
Agent Technology
Monitoring and control networks
Hybrid electric vehicles
Smart grid

Research Interests
Modeling and control of hybrid electric vehicles
EV-smart grid integration
Distributed monitoring and control
Battery control for HEV and energy storage systems
IC engine management systems
Sensor information fusion

Collaborative Research: On Making Wave Energy an Economical and Reliable Power Source for Ocean Measurement Applications

National Science Foundation

Work Plan:
Task 1: Wave-by-wave control and Multi-resonant control
(a-i) Wave-by-Wave Control: Generalize to conversion from relative oscillation in surge, heave, and pitch modes. This step places high expectations on geometry design, because the chosen geometry needs to maximize wave radiation (radiation damping) by relative oscillation in all three modes. Typically, for small axi-symmetric buoys, radiation damping in surge and pitch modes is considerably smaller than that in heave mode. Therefore, greater oscillation excursions are typically required for optimal conversion in these modes. In addition, the power requirements of the wave measurement hardware also need to be included in the daily/annual powver calculations. For the X-band Radar hardware applicable to the up-wave distances of interest to us (on the order of 1000 m), the power consumption is expected to be less than 300 W (average). This could pose a challenge in some wave conditions, but it is likely that the use of multiple modes and optimized geometries will help to provide sufficient usable power for the iFCB application we are pursuing in this work. We plan to extend the current simulations to address these needs.
(a-ii) Geometry Design: New geometry design/utilization approaches to maximize the radiation damping for the 3 relative oscillation modes are being considered. These will be evaluated through detailed simulations in the forthcoming period.
(b) Multi-resonant Control: Current implementations need to be extended to incorporate realistic oscillation constraints. Further extensions to 2-body systems with power capture from relative oscillation are also required, and are planned for the forthcoming period. Finally, the procedure also needs to be extended to investigate multiple-mode conversion (i.e. relative heave, pitch, and surge oscillations).
Task 2: Actuator Design and Energy Storage
Work is planned for the forthcoming period where propose to examine favorably interacting buoy-instrument cage geometries that will minimize the need for large amounts of reactive power to flow through the system. Particular attention will be given to hydrodynamic and mechanical coupling effects and ways to provide negative stiffness through geometry design.
In addition, non-polluting high-lubricity hydraulic fluids will be evaluated through actuator dynamic models over the frequency range of interest.
Task 3: Simulation of Complete System and Wave Tank Testing
This is an important part of the project. The complete system will be simulated following inclusion of multiple-mode relative oscillation conversion and more detailed actuator design. Besides the power requirements of the wave measurement system, all other non-function-critical power needs embedded within the overall system (on-board electronics, etc.) will be included in this simulation.
Wave tank tests are planned as part of this project. Preparations are currently underway to install a wave tank (with flap type absorbing wave makers) capable of providing accurate and repeatable sea states for this project. 1/2 or 1/5 scale models are planned.

Investigator: Umesh Korde

Autonomous Microgrids: Theory, Control, Flexibility and Scalability

U.S. Dept of Defense Office of Naval Research

Project Description and Research Objectives:
From large scale electric power grids and microgrids down to small scale electronics, power networks are typically deployed using a fixed infrastructure architecture that cannot expand or contract without significant human intervention. Mobile, monolithic power systems exist but are also not readily scalable to exploit surrounding power sources and storage devices. However, if a power network is constructed from physically independent and autonomous building blocks, then it would be infinitely reconfigurable and adaptable to changing needs and environments. The aim of this project is to integrate vehicle robotics with intelligent power electronics to create self-organizing, ad-hoc, hybrid AC/DC microgrids. The main benefits of this system would be the establishment and operation of an electrical power networks independent of human interaction and can adapt to changing environments, resource and mission. In the context of U.S. Naval platforms, this autonomous electrical network could be used in land, air or sea systems.

The focus of this work will be on land based autonomous microgrid systems, but the fundamental theory developed may be applicable to air and sea based systems as well. Investigators at Michigan Technological University have developed initial hardware and testbeds to study this problem. However, a more detailed theoretical foundation is needed to be developed to apply autonomous microgrids to a wide variety of operational scenarios with various resources. It is also hypothesized that given the flexibility of this approach that it could be equally applied over a vast scale of energy assets. A microgrid that grows in situ from 10 s to 100 s to 1000 s of energy assets can be equally managed, controlled and optimized through the highly scalable approach proposed in this project.

These applications are examples of the critical need for autonomous mobile microgrid capable of operating in highly dynamic and potentially hazardous environments. Our overall goal is to create a scalable architecture to develop a system that accounts for uncertainty in predictions and disturbances, is redundant, requires minimal communication between agents, provides real-time guarantees on the performance of path planning, and reaches the targets while making electrical connections. Such architecture provide a coherent layout for the interconnection between different disciplines on this topic and minimizes the integration concerns for future developments.

Description of the Proposed Work:
• Microgrid Planning and Control
• Microgrid Topology and Optimization
• Electrical Components and Power Flow
• Game-Theoretic Control
• Physical Autonomous Positioning and Connections

Investigator: Wayne Weaver, Rush Robinett and Nina Mahmoudian

Wayne Weaver

image25785-persWayne W. Weaver received a BS in Electrical Engineering and a BS in Mechanical Engineering from GMI Engineering & Management Institute in 1997, and an MS and PhD in Electrical Engineering from the University of Illinois at Urbana–Champaign. Weaver was a research and design engineer at Caterpillar Inc., in Peoria, Illinois, from 1997 to 2003. From 2006 to 2008, he also worked as a researcher at the US Army Corp of Engineers, Engineering Research and Development Center (ERDC), Construction Engineering Research Lab (CERL), in Champaign, Illinois, on distributed and renewable-energy technology research. Weaver is a registered professional engineer in Illinois. His research interests include power electronics, electric machine drives, electric and hybrid-electric vehicles, and non-linear and optimal control.

Areas of Interest

  • Power electronics systems
  • Microgrids
  • Non-linear and game theoretic controls
  • Distributed energy resources
  • Electric drives and machinery

Interconnected and Agile Microgrids Research

Overview

Interconnected MicrogridA microgrid may consist of many interconnected energy assets to improve reliability efficiency. Two or more microgrids can also interconnect to share resources to further improve reliability and efficiency. The scalable microgrid project is aimed at creating a hardware test-bench capable of developing and testing technologies for control and optimization in large numbers of interconnected microgrids. It is also aimed at studying how these technologies can scale up to high and higher numbers of interconnected microgrids. Development of power conversion nodes that adapt and connect to an expanding interconnected microgrid structure to create a large, decentralized power distribution network that can adapt to changing resources and demands.

Active Research Projects

Applications

  • Communication protocols
  • High penetration renewable
  • Agile grid controls
  • Control of interconnected microgrids
  • Scale model explorations

Interconnected Flowchart

Agile DC Microgrid Testbed Architecture

Agile DC Microgrid Testbed Architecture

MTU - Scalable Interconnected Microgrid Testbed

MTU – Scalable Interconnected Microgrid Testbed
The light-weight agile DC microgrid testbed will be expanded to dozens of interconnected microgrids.

Interconnected Applications