NRI: Co-Robots to Engage Next Generation of Students in STEM Learning

National Science Foundation

Overview:
Correctly, the 2009 Roadmap for US Robotics report predicted that robotics technology would transform the future of the US workforce and households. From Roomba vacuum cleaners to Wii video games, we increasingly see robotic technology in work spaces and homes. Yet, the US continues to lag behind China, South Korea, Japan, and European Union in its investment in robotics research and education. The Next Generation Science Standards for Today’s Students and Tomorrow’s Workforce responds to this critical need by providing a curricular framework for using crosscutting concepts and disciplinary ideas that: have broad importance across science and engineering disciplines; are taught around a key organizing concept (like health or water) and use key tool (pedagogical platform); have a significant context for students and are explicitly connected to societal needs; and are teachable and learnable over multiple grades. Informed by this framework, our proposed NRI aims to develop, test, and assess two co-robotic platforms with high impact potential and longevity as a pedagogical platform (use is applicable from 4th grade through graduate school learning). Two unique robotics educational platforms will be used to teach 6th-8th grade: an educational underwater glider called GUPPIE and a surface electromyography (sEMG)- controlled manipulator called Neu-pulator. Both of these platforms can be categorized as co-robot and cost less than $1000. GUPPIE is an unmanned vehicle that has application in monitoring and inspection of the environment and can be used to introduce students to the application of robots as co-explorers in everyday life. Neu-pulator is a human-interactive robot that uses electrical activity of human muscles to move a manipulator. It introduces students to assistive robots, which are a class of co-robots that aim to amplify or compensate for human capabilities. We hypothesize that meaningful contexts and hands-on learning with co-robotic platforms will broaden impact to diverse audiences and increase interest in critical STEM areas. The overall goal of the proposed NRI is to develop and evaluate the use of co-robotic platforms in learning contexts that are socially meaningful, especially for underrepresented students (female students from rural, low socioeconomic areas in the Upper Peninsula of Michigan). Our specific objectives are to: 1) Optimize Michigan Tech’s co-robotic platform designs for teaching STEM concepts. 2) Develop educational activities/curriculum utilizing Michigan Tech’s co-robotic platforms. 3) Investigate the co-robotic platforms effectiveness in engaging students in STEM learning.

Intellectual Merit:
The proposed work will develop a pedagogical platform and evaluation method that can be easily translated for classroom practice from grades 4th-12th and in undergraduate to graduate degree programs. Training teachers in platform use during teacher workshops will help schools respond to and integrate new science standards – efficiently and effectively using meaningful contexts. Continued online training and modules will be available to broadly disseminate platform applications for informal and formal learning contexts. The hardware development and programming of co-robots will teach critical analytical thinking. The nature of co-robotic platforms, on the other hand, will inspire students to become integrative designers. By exercising both analytical thinking and design skills, these co-robotic platforms will improve students’ ability for creative problem solving, and ultimately increase individual motivation for pursuing STEM academic and career pathways. The project will produce research that compares the effectiveness of mission-based and application-based robotics activities for engaging students in STEM.

Investigators: Nina Mahmoudian and Mo Rastgaar

Low-Cost Underwater Glider Fleet for Littoral Marine Research

Office of Naval Research

This research is focused on development of innovative practical solutions for control of individual and multiple unmanned underwater vehicles (UUVs) and address challenges such as underwater communication and localization that currently limit UUV use. More specifically, the Nonlinear and Autonomous Systems Laboratory (NAS Lab) team are developing a rigorous framework for analyzing and controlling underwater gliders (UGs) in harsh dynamic environments for the purpose of advancing efficient, collaborative behavior of UUVs.

Underwater gliders are now utilized for much more than long-term, basin-scale oceanographic sampling. In addition to environmental monitoring, UGs are increasingly depended on for littoral surveillance and other military applications. This research will facilitate the transition between academic modeling/simulation problem solving approach to real-world Navy applications. The importance of this research is evident in the Littoral BattleSpace Sensing (LBS) Program contract at the Naval Space and Naval Warfare Systems Command for 150 underwater gliders, designated the LBS-G. These gliders will be operated by the Navy in forward areas to rapidly assess and exploit environmental characteristics to improve the maneuvering of ships and submarines and advance the performance of fleet sensors.

Research results will provide the coordination tools necessary to enable the integration of these efficient and quiet vehicles as part of a heterogeneous network of autonomous vehicles capable of performing complex, tactical missions. The objective is to develop practical, energy-efficient motion control strategies for both individual and multiple UGs while performing in inhospitable, uncertain, and dynamic underwater environments.

The specific goals of this project are twofold. The first goal is to design and fabricate a fleet of low-cost highly maneuverable lightweight underwater gliders. The second goal is to evaluate the capability of the single and multiple developed UGs in littoral zones. The proposed work will develop UGs that would share the buoyancy-driven concept with the first generation of gliders called “legacy gliders.” However, the NAS Lab UGs will be smaller in size, lighter in weight, and lower in price than legacy gliders. This will result in more affordable and novel UG applications. Moreover, the NAS Lab design to development approach allows for technological innovation that overcomes known challenges and responds to unexpected needs that arise during testing. Therefore, the significance of this research is that it will enable implementation of recently developed efficient motion planning algorithms, multi-vehicle coordination algorithms, and extension of these algorithms in realistic conditions where absolute location and orientation of each vehicle is not known and the time-varying flow field is not locally determined.

 

Investigators: Nina Mahmoudian

Human Factors, Curriculum Development and Commercialization Research

Overview

Lead curriculum development and commercial research that educates engineers with skills to solve energy-related, interdisciplinary problems and design next-generation systems. Commercialize IP developed at Michigan Tech to field microgrid and cyber security applications.

Active Projects

Applications

  • Science, Technology, Engineering, Math (STEM) outreach
  • IP commercialization
  • Curriculum development
  • Military-to-civilian technology training
  • PEV vehicle charging and peak shaving
  • V2G for provisional grids – disaster relief
  • Building storage

Human Factors