Ossama Abdelkhalik

Abdelkhalik_0219Dr. Abdelkhalik conducts research in the area of dynamics, control, and  global optimization with applications to spacecraft trajectory planning, data assimilation in oil reservoirs, systems design, and traffic engineering. In some applications, the design space has numerous local minima, with mixed variables (integer and real), and the number of optimization variables can be varied among different solutions to explore new regions in the design space. Global optimization methods can handle problems with mixed variables and numerous local minima, but variable-size design space optimization is yet to be explored. The research focus is on the study of global optimization methods that can handle variable-size design space problems. Other research efforts include the recursive implementation of evolutionary optimization algorithms for the sake of improving the computational efficiency in data assimilation problems.

Areas of Expertise

  • Estimation of Dynamic Systems
  • Global Optimization
  • Data Assimilation
  • Controls and Control Systems

Nina Mahmoudian

Nina Mahmoudian_Fall2013-1Dr. Mahmoudian’s general research interests lie in the area of dynamics, stability, and control of nonlinear systems. Specifically, she is interested in dynamic modeling, motion planning, and developing cooperative control algorithms to autonomous vehicles. Design and control of autonomous vehicles based on the principles used by nature is another area of interest.  She works on developing analytical and computational tools for the cooperative control of a network of autonomous vehicles in complex environment using nonlinear control and stochastic analysis. The application will be for air, ground, and sea autonomous vehicles.

Areas of Expertise

  • Nonlinear Control and Dynamics
  • Cooperative Control of Multi Agent Systems
  • Autonomous Vehicles with Special Interest in Underwater Gliders

Prepositioned Power Research


Prepositioned Power RobotsResearch is focused on developing technology to create systems that can autonomously create a microgrid, for situations that require the ability to preposition a basic level of energy infrastructure such as areas damaged by natural or man-made disasters, and autonomously deploying forward operating bases. Modeling and control of robotics and power conversion systems provides the ability to create such prepositioned electric power networks.

Active Projects


Autonomous Robots can carry a variety of power equipment:

  • Intelligent power electronics for energy conversion
  • Power connection hardware
  • Generation sources, both traditional and renewable
  • Energy storage


Prepositioned Power

Prepositioned Power

Four autonomous microgrid robots, each with different power network functionality. Two have renewable energy generation and storage capability, another has a conventional diesel genset, and the third contains intelligent power electronics for conversion and hard-line interconnection, and switchgear. After assessing the power requirements and available resources they would physically organize and electrically interconnect to form a micro-grid.