On Integrating Object Detection Capability into a Coastal Energy Conversion System

U.S. Department of Defense, Office of Naval Research

Project Summary
Near-shore wave energy converter arrays may be designed to provide uninterrupted power to a number of coastal sensing applications, including sensors monitoring meteorological conditions, sea-water chemical/physical properties, tsunamis and storm surges, fish and other marine life, coastal and sea-floor conditions, etc. Active control seeking near-optimum hydrodynamic operation has been shown to enable a dramatic reduction in device size for required amounts of power. Certain features of the control strategies developed make them particularly amenable to incorporation of additional sensing capability based on the wave patterns generated by intruding submerged objects (at distances on the order of 1000 m), in particular, the phase changes to the approaching wave field that occur in the presence of an object.

This project investigates schemes for actively controlled wave energy converter arrays in coastal waters which enable detection of intruding marine vessels by monitoring the spatial and temporal energy conversion rates over the arrays. The proposed approach mainly utilizes a linear-theory based understanding of wave propagation, body hydrodynamics, and controller design, but also incorporates nonlinear extensions based on Volterra series modeling. Of particular interest, is using small device sizes, for which response nonlinearities can be significant. Therefore, it is proposed to exploit the nonlinearities to enhance energy generation. Furthermore, also investigate ways to utilize features of the nonlinear response that enable preferential coupling to certain phase signatures, so that energy conversion by certain array elements would imply the presence of an object. Analysis and simulation results on arrays of moored devices will be extended to free-floating arrays.

The first objective of the overall effort is to evaluate the proposed techniques through analysis and simulation. For near-shore sea areas to be identified, two categories or types of array designs with their own particular control strategies will be investigated, using Hydrodynamics and Controls based analytical techniques and detailed simulations (linear and nonlinear). Necessary in this process is the characterization of the phase-change signatures of various submerged objects when stationary and when in translation. This knowledge will provide the test parameters for the designs to be investigated. The first two years of the overall, 4-year long, effort are expected to provide the groundwork for the development of a prototype system. Prior to ‘at-sea’ prototype testing, first test the prototype in a wave-basin environment. To provide reliable designs for the testing in the wave basin, wave tank testing under simplified conditions is also proposed. The overall testing sequence from wave tank tests through wave-basin tests to ‘at sea’ tests is expected to occur over years 3 and 4.

Investigators: Umesh Korde, Rush Robinett, Ossama Abdelkhalik

Collaborative Research: On Making Wave Energy an Economical and Reliable Power Source for Ocean Measurement Applications

National Science Foundation

Work Plan:
Task 1: Wave-by-wave control and Multi-resonant control
(a-i) Wave-by-Wave Control: Generalize to conversion from relative oscillation in surge, heave, and pitch modes. This step places high expectations on geometry design, because the chosen geometry needs to maximize wave radiation (radiation damping) by relative oscillation in all three modes. Typically, for small axi-symmetric buoys, radiation damping in surge and pitch modes is considerably smaller than that in heave mode. Therefore, greater oscillation excursions are typically required for optimal conversion in these modes. In addition, the power requirements of the wave measurement hardware also need to be included in the daily/annual powver calculations. For the X-band Radar hardware applicable to the up-wave distances of interest to us (on the order of 1000 m), the power consumption is expected to be less than 300 W (average). This could pose a challenge in some wave conditions, but it is likely that the use of multiple modes and optimized geometries will help to provide sufficient usable power for the iFCB application we are pursuing in this work. We plan to extend the current simulations to address these needs.
(a-ii) Geometry Design: New geometry design/utilization approaches to maximize the radiation damping for the 3 relative oscillation modes are being considered. These will be evaluated through detailed simulations in the forthcoming period.
(b) Multi-resonant Control: Current implementations need to be extended to incorporate realistic oscillation constraints. Further extensions to 2-body systems with power capture from relative oscillation are also required, and are planned for the forthcoming period. Finally, the procedure also needs to be extended to investigate multiple-mode conversion (i.e. relative heave, pitch, and surge oscillations).
Task 2: Actuator Design and Energy Storage
Work is planned for the forthcoming period where propose to examine favorably interacting buoy-instrument cage geometries that will minimize the need for large amounts of reactive power to flow through the system. Particular attention will be given to hydrodynamic and mechanical coupling effects and ways to provide negative stiffness through geometry design.
In addition, non-polluting high-lubricity hydraulic fluids will be evaluated through actuator dynamic models over the frequency range of interest.
Task 3: Simulation of Complete System and Wave Tank Testing
This is an important part of the project. The complete system will be simulated following inclusion of multiple-mode relative oscillation conversion and more detailed actuator design. Besides the power requirements of the wave measurement system, all other non-function-critical power needs embedded within the overall system (on-board electronics, etc.) will be included in this simulation.
Wave tank tests are planned as part of this project. Preparations are currently underway to install a wave tank (with flap type absorbing wave makers) capable of providing accurate and repeatable sea states for this project. 1/2 or 1/5 scale models are planned.

Investigator: Umesh Korde

Making Small Wave Energy Converters Cost-Effective for Underwater Microgrids through a 10-Fold Improvement in Year-Round Productivity

South Dakota School of Mines and Technology

Objective

Proposed Work
Drivetrain and Actuator
1- Conceptual Design of actuators with large stroke and large rated force.
2- Conceptual Design of a high efficient drivetrain and energy storage for low frequency oscillatory systems (WECs)
3- Evaluate several technologies (electrical, mechanical, and hydraulic) for the design of the actuator and powertrain, with the requirement of limiting the overall cost.

Investigators: Ossama Abdelkhalik and Mark Vaughn

Umesh Korde


Biography
Umesh Korde has been active in the area of ocean wave energy utilization since 1982. He has worked on several aspects of the problem, though his research over the last three decades has primarily been concerned with the dynamics, control, and hydrodynamics of oscillating bodies and pressure distributions performing as the primary working element of a wave energy converter. Of particular interest in the last few years have been small devices capable of integration into measurement and sensing systems in the ocean, as well as shore and ocean based microgrids serving a variety of applications. A focal area of his current research has been new techniques for modeling and control, including novel ways to utilize existing approaches.

Dr. Korde has also worked on the dynamics and control of flexible bodies including lightweight membranes, for space applications such as steering and shaping of laser beams, tunable passive damping of lightweight structures, and self-healing of structures using focused stress waves. Dr. Korde serves as an associate editor for the journal J Ocean Engineering and Marine Energy (Springer), and is a Fellow of the American Society of Mechanical Engineers.

Research Specialties

  • Dynamics and control: floating body hydrodynamics, hydrodynamic modeling of buoys, cables;
  • Modeling and control of flexible and smart structures;
  • Wave energy converters, near-optimal control in the time domain;
  • Adaptive and nonlinear control of floating bodies;
  • Low-dissipation actuator and mechanism development, development of new detection and sensing modalities;
  • Deterministic wave prediction;
  • Control of ship-board systems
  • Wave powered microgrids